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Abstract
Objective. Brain–computer interfaces (BCIs) decode information from neural activity and send it
to external devices. The use of Deep Learning approaches for decoding allows for automatic feature
engineering within the specific decoding task. Physiologically plausible interpretation of the
network parameters ensures the robustness of the learned decision rules and opens the exciting
opportunity for automatic knowledge discovery. Approach.We describe a compact convolutional
network-based architecture for adaptive decoding of electrocorticographic (ECoG) data into finger
kinematics. We also propose a novel theoretically justified approach to interpreting the spatial and
temporal weights in the architectures that combine adaptation in both space and time. The
obtained spatial and frequency patterns characterizing the neuronal populations pivotal to the
specific decoding task can then be interpreted by fitting appropriate spatial and dynamical models.
Main results.We first tested our solution using realistic Monte-Carlo simulations. Then, when
applied to the ECoG data from Berlin BCI competition IV dataset, our architecture performed
comparably to the competition winners without requiring explicit feature engineering. Using the
proposed approach to the network weights interpretation we could unravel the spatial and the
spectral patterns of the neuronal processes underlying the successful decoding of finger kinematics
from an ECoG dataset. Finally we have also applied the entire pipeline to the analysis of a
32-channel EEG motor-imagery dataset and observed physiologically plausible patterns specific to
the task. Significance.We described a compact and interpretable CNN architecture derived from
the basic principles and encompassing the knowledge in the field of neural electrophysiology. For
the first time in the context of such multibranch architectures with factorized spatial and temporal
processing we presented theoretically justified weights interpretation rules. We verified our recipes
using simulations and real data and demonstrated that the proposed solution offers a good decoder
and a tool for investigating motor control neural mechanisms.

1. Introduction

Brain–computer interfaces (BCIs) link the nervous
system to external devices [7] or even other brains
[25]. While there exist many applications of BCIs [1],
clinically relevant BCIs have received most attention
that aid in rehabilitation of patients with sensory,
motor, and cognitive disabilities [18]. Clinical uses of
BCIs range from assistive devices to neural prostheses
that restore functions abolished by neural trauma or
disease [5].

BCIs can deal with a variety of neural signals
[14, 23] such as, for example, electroencephalographic

(EEG) potentials sampled with electrodes placed on
the surface of the head [17], or neural activity recor-
ded invasively with the electrodes implanted into the
cortex [9] or placed onto the cortical surface [33].
The latter method, which we consider here, is called
electrocorticography (ECoG). Accurate decoding of
neural signals is key to building efficient BCIs.

Typical BCI signal processing comprises several
steps, including signal conditioning, feature extrac-
tion, and decoding. In the modern machine-learning
algorithms, parameters of the feature extraction and
decoding pipelines are jointly optimized within com-
putational architectures called deep neural networks
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(DNNs) [15]. DNNs derive features automatically
when trained to execute regression or classification
tasks. While it is often difficult to interpret the com-
putations performed by a DNN, such interpreta-
tions are essential to gain understanding of the prop-
erties of brain activity contributing to decoding,
and to ensure that artifacts or accompanying con-
founds do not affect the decoding results. DNNs
can also be used for knowledge discovery. In par-
ticular, interpretation of features computed by the
first several layers of a DNN could shed light on
the neurophysiological mechanisms underlying the
behavior being studied. Ideally, by examining DNN
weights, one should be able to match the algorithm’s
operation to the functions and properties of the
neural circuitry to which the BCI decoder connects.
Such physiologically tractable DNN architectures are
likely to facilitate the development of efficient and
versatile BCIs.

Several useful and compact architectures have
been developed for processing EEG and ECoG data.
The operation of some blocks of these architec-
tures can be straightforwardly interpreted. Thus,
EEGNet [13] contains explicitly delineated spatial
and temporal convolutional blocks. This architec-
ture yields high decoding accuracy with a minimal
number of parameters. However, due to the cross-
filter-map connectivity between any two layers, a
straightforward interpretation of the weights is dif-
ficult. Some insight regarding the decision rule can
be gained using DeepLIFT technique [36] combined
with the analysis of the hidden unit activation pat-
terns. Schirrmeister et al describe two architectures:
DeepConvNet and its compact version ShallowCon-
vNet. The latter architecture consists of just two con-
volutional layers that perform temporal and spa-
tial filtering, respectively [34]. Waytowich et al [38]
describes a compact CNN architecture with sep-
arable spatial and temporal convolutions to per-
form classification of EEG in he SSVEP paradigm.
Recent study of Zubarev et al [40] reported two
compact neural network architectures, LF-CNN and
VAR-CNN, that outperformed the other decoders of
MEG data, including linear models and more com-
plex neural networks such as ShallowFBCSP-CNN,
EEGNet-8 and VGG19. LF-CNN and VAR-CNN con-
tain only a single non-linearity, which distinguishes
them from most other DNNs. This feature makes
the weights of such architectures readily interpretable
with the well-established approaches [8, 11, 26]. This
methodology, however, has to be applied taking into
account the peculiarities brought about by the separ-
ability of the spatial and temporal filtering steps in
these architectures.

Here we introduce another simple architecture,
developed independently but conceptually similar to
those listed above, and use it as a testbed to refine
the recipes for the interpretation of the weights in
the family of architectures characterized by separated

adaptive spatial and temporal processing stages. We
refer to this kind of processing as factorized pro-
cessing. We emphasize that when interpreting the
weights in such architectures we have to keep in
mind that these architectures tune their weights
not only to adapt to the target neuronal popula-
tion(s) but also to minimize the distraction from
the interfering sources in both spatial and frequency
domains.

The solutions exercised in [2, 3, 10, 21, 27] and
elegantly summarized in [8] take care of this adaptive
behavior but is directly applicable only to the regres-
sion like models where a single vector of weights is
applied to the data(feature) vector. This is not the
case with the type of models considered here where
filtering in one domain is followed by the applic-
ation of a filter in another domain. The factorized
processing reduces the number of parameters in the
architecture but requires a special weights interpreta-
tion approach derived here in order to accurately asses
spatial patterns of the neuronal sources underlying
decision rule learned by the architectures with fac-
torized processing. Also using Wiener filtering argu-
ments we for the first time expand the weights inter-
pretation approach to the analysis of temporal fil-
ter weights and show how the learned temporal con-
volution kernels in combination with the spatially
filtered neural activity data give access to the estim-
ates of the power spectral density of the underly-
ing neuronal populations pivotal to the decoding
task.

2. Methods

In our description we will use standard notation
where bold capitals denote matrices, small bold let-
ters stand for column vectors and small italic sym-
bols for scalars. To refer to the temporal dimen-
sion we use discrete index framed into square brack-
ets. Figure 1 illustrates a hypothetical relationship
between motor behavior (hand movements), brain
activity, and ECoG recordings. The activity, s[n] =
[s1[n], . . . , sI[n]]

T ∈ RI, of a set of I neuronal popu-
lations, G1−GI, engaged in motor control, is con-
verted into a movement trajectory, z[n], through a
non-linear transformH: z[n] =H(e[n]) where e[n] =
[e1[n], . . . ,eI[n]]

T is the vector of envelopes of s[n].
The activity of another set of J populations A1−
AJ is unrelated to the movement. The recordings
of this activity with a set of L sensors at time
instance n are represented by a L× 1 vector of
sensor signals x[n] ∈ RL. At each time instance n
this vector can be modeled as a linear mixture of
signals resulting from application of the forward-
modelmatricesG= [g1[n], . . . ,gI[n]] ∈ RL×I andA=
[a1[n], . . . ,aJ[n]] ∈ RL×J to the column vector of activ-
ity of task-related sources at the time moment n,
s[n] = [s1[n], . . . , sI[n]]

T, and task-unrelated sources,
f[n] = [f1[n], . . . , fJ[n]]

T, respectively:
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Figure 1. Phenomenological diagram.

x[n] = Gs[n] +Af[n] =
I∑

i=1

gisi[n] +
J∑

j=1

ajfj[n]

=
I∑

i=1

gisi[n] +η[n]. (1)

Column vectors gi, i= 1, . . . , I and aj, j= 1, . . . , J
are the topographies of the task related and task-
unrelated sources. We refer to the noisy, task-
unrelated component of the recording as η[n] =∑J

j=1 ajfj[n] ∈ RL. A similar generative model has
been recently described in [32].

Given the linear generative model of electro-
physiological data, the inversemapping used to derive
the activity of sources from the sensor signals is also
commonly sought in the linear form: ŝ[n] =WTX[n],
where columns ofW form a spatial filter that counter-
acts the volume conduction effect and decreases the
contribution from the noisy, task-unrelated sources.

Neuronal correlates of motor planning and exe-
cution have been extensively studied [39]. In the
cortical-rhythm domain, alpha and beta components
of the sensorimotor rhythm desynchronize just prior
to the execution of a movement and rebound with a
significant overshoot upon the completion of amotor
act [19]. The magnitude of these modulations cor-
relates with the person’s ability to control a motor-
imagery BCI [30]. Additionally, the incidence rate
of beta bursts in the primary somatosensory cortex
is inversely correlated with the ability to detect tact-
ile stimuli [35] and also affects other motor func-
tions. Intracranial recordings, such as ECoG, allow
reliable measurement of the faster gamma band
activity, which is temporally and spatially specific to

movement patterns [37] and is thought to accompany
movement control and execution. Overall, based on
the very solid body of research, rhythmic compon-
ents of brain sources, s[n], appear to be useful for BCI
implementations.Given the linearity of the generative
model (1), these rhythmic signals reflecting the activ-
ity of specific neuronal populations can be computed
as linear combinations of narrow-band filtered sensor
data x[n].

Themost straightforward approach for extracting
the kinematics, z[n], from brain recordings, x[n], is
to use concurrently recorded data and directly learn
the mapping z[n] =H(x[n]). To practically imple-
ment it, one needs to parametrically describe this
mapping. Here we used a specific network architec-
ture for this purpose. The architecture was construc-
ted in a close correspondence with the observation
equation (1) and the neurophysiological description
of the observed phenomena illustrated in figure 1,
which facilitated our ability to interpret the results.

2.1. Network architecture
The compact and adaptable architecture that we used
here is shown in figure 2. As shown the architecture
comprises M branches. Each branch is an adaptive
envelope detector with its own pair of temporal fil-
ters preceded by the branch- specific spatial filter. Our
envelope detector approximates the envelope extrac-
ted as the absolute value of the analytic signal cal-
culated using Hilbert transform of the input signal.
The processing flow we use mimics that of an analog
detector receiver and has also been used in other sim-
ilar compact CNN architectures that employ separate
treatment of the spatial and the temporal dimensions
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Figure 2. The architecture based on the compact CNN comprises several branches—adaptive envelope detector, receiving
spatially unmixed input signals and outputting the envelopes whose N most recent values with indexes n−N+ 1,…, n are
combined in the decoded variable z by the fully connected layer. Note that for compactness we have omitted temporal index in the
sequence names.

[34, 40]. Each branch of our network is a paramet-
ric pipeline capable of extracting the instantaneous
power of the input signal and adapting to the specific
neuronal population and frequency band by tuning
spatial and temporal filter weights correspondingly.

As shown in the diagram, the envelope detector
can be implemented using modern DNN primitives,
namely a pair of convolutional operations that per-
form band-pass and low-pass filtering with a single
non-linearity ReLu(−1) in between that corresponds
to computing the absolute value of the output of
the first 1D convolutional layer. This step rectifies
the signal (acts as a full-wave rectifier built using
a pair of diodes) and is followed by a low-pass fil-
ter that smooths the rectifier output rm[n] to obtain
the approximation of the envelope em[n]. Note that
ReLu(a) is now a standard non-linearity used in the
modern neural networks and defined as ReLu(x,a) =
{x,x⩾ 0;ax,x< 0}. To make the decision rule of this
structure tractable, we used non-trainable batch nor-
malizationwhen streaming the data though the struc-
ture. This way we can harness the power of the optim-
ization tools implemented within the deep learning
approach to tune parameters of our network that uses
spatial filters followed by envelope estimation as the
feature extraction block.

In our architecture, the envelope detector of the
mth branch receives as an input spatially filtered
sensor signal sm[n] calculated by the point-wise con-
volutional layer. This layer is designed to invert
the volume-conduction processes represented by the
forward-model matricesG andA in our phenomeno-
logicalmodel (figure 1). Next, we approximated oper-
ator H as a linear combination of the lagged instant-
aneous power (envelope) of the narrow-band source
timeseries s(t) = [s1(t), s2(t), . . . , sI(t)] with coeffi-
cients from matrix U= {uml}, m= 1, . . . ,M, l=
1, . . . ,N. This was done with a fully connected layer
that mixed the samples of envelopes, em[n], into a
single estimate of the kinematic parameter z[n] =∑M

m=1

∑N
l=1 em[n− l]uml + u0 where u0 models the

DC offset term that may be present in the kinematic
profile..

2.2. Two regression problems and DNNweights
interpretation
The described architecture processes data in chunks
of a prespecified length of N samples. We will first
assume that the chunk length is equal to the filter
length in the 1D convolution layers. Consider a chunk
of input data from L channels observed over the inter-
val of N time moments hat can be represented with a
Toeplitz matrix X[n] = [x[n],x[n− 1], . . . ,x[n−N+
1]] ∈ RL×N. Processing of X[n] by the first two lay-
ers performing spatial and temporal filtering can be
described for themth branch as

bm[n] = w
T
mX[n]hm (2)

where wm ∈ RL is spatial weights and hm ∈ RN is
temporal weights of branch m. The non-linearity,
ReLu(−1), in combination with the low-pass filtering
performed by the second convolutional layer, extracts
the envelopes of rhythmic signals.

The analytic signal is mapped one-to-one to its
envelope [6] and for the original real-valued data, the
imaginary part of the analytic signal is uniquely com-
puted via Hilbert transform. Therefore, the original
real-valued signal is uniquely mapped to its envelope.
Our envelope detector computes a close approxima-
tion of the absolute value of the analytic signal and
therefore we can state that em[n] is uniquely determ-
ined by bm[n]. Thus, in order to obtain the proper
envelope em[n] it suffices to obtain the proper bm[n]
which is achieved by adjusting the spatial and tem-
poral convolution weights of each branch of the com-
pact CNN.

Assume that the training of the adaptive envel-
ope detectors resulted in optimal spatial and tem-
poral convolution weights marked with asterisks, w∗

m

and h∗m correspondingly. Let us also assume that
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these optimal weights indeed extract the ground-
truth population activity signals b∗m[n] that uniquely
determine the envelopes e∗m[n] that in turn give rise
the sought kinematics z[n] when transformed with
a non-linear operator H() approximated by the fully
connected layer of our network. Imaging that the spa-
tial filter weights are not knownbut the temporal con-
volutionweights is fixed to its optimal valueh∗m. Then,
we can find the optimal spatial weights as the solution
to a convex optimization problem formulated over
spatial subset of parameters:

w∗
m = argminwm

{∥ b∗m[n]−wT
mX[n]h

∗
m ∥22}

= argminwm
{∥ b∗m(n)−wT

mym[n] ∥
2

2} (3)

where the temporal weights are fixed at their optimal
value, h∗m, and ym[n] = X[n]h

∗
m is a temporally filtered

vector of multichannel data. Similarly, when spatial
weights are fixed at the optimal value w∗

m , the tem-
poral weights are expressed by the equation:

h∗m = argminhm{∥ b
∗
m[n]−w∗T

m X[n]hm ∥22}

= argminhm{∥ b
∗
m[n]− vTm[n]hm ∥22} (4)

where vm[n] = [vm[1], . . . ,vm[N]]T = XT[n]w∗
m is a

spatially filtered chunk of incoming data.
Given the forward model (1) and the regres-

sion problem (3) and assuming mutual stat-
istical independence of the rhythmic potentials
sm[n], m= 1,…,M , the topographies of the under-
lying neuronal populations can be found as [8, 11]

gm = E{ym[n]yTm[n]}w∗
m = Ry

mw
∗
m (5)

where Ry
m = E{ym[n]yTm[n]} is a L× L spatial covari-

ance matrix of the temporally filtered data, assuming
that channel timeseries are zero-mean random pro-
cesses, L is the number of input channels. Thus, when
interpreting individual spatial weights corresponding
to each of theM branches of the architecture shown in
figure 2 one has to take into account the temporal fil-
ter weightsh∗m thismth branch is tuned for. Therefore,
to transform the spatial weights of different branches
into spatial patterns, branch-specific spatial covari-
ance matrices Ry

m should be used that depend on
the temporal convolution weights in each particular
branch. This becomes obvious if one remembers that
the spatial and temporal filtering operations are linear
and can be interchanged. However, since each of the
branches has its own temporal filter, when depicting
the architecture it is more convenient to place the spa-
tial unmixing step first followed by the temporal filter.
Considering a single branch, switching the order and
first applying the same temporal filter to all data chan-
nels followed by the spatial filter makes expression (5)
intuitive based on the derivations presented in [8].
Clearly, when interpreting the spatial filter weights of
the mth branch one has to use spatial covariance of

the data filtered with the temporal filter specific to the
mth branch.

The temporal weights can be interpreted in a sim-
ilar way. The temporal pattern is calculated as

qm = E{vm[n]vTm[n]}h∗m = Rv
mh

∗
m (6)

where Rv
m = E{vm[n]vTm[n]} is an N ×N tap covari-

ance matrix of the spatially filtered data, assuming
that channel timeseries are zero-mean random pro-
cesses, N is the number of taps in the temporal con-
volution filter and the length of the data chunk pro-
cessed at a time. As with the spatial patterns, when
interpreting individual temporal weights correspond-
ing to each of the M branches of the architecture
shown in figure 2, one has to take into account the
spatial filter weightswm that are used to feed the indi-
vidual mth branch. To transform the temporal con-
volution weights of different branches into temporal
patterns, branch-specific tap covariance matrices Rv

m

should be used that depend on the spatial point-wise
convolution weights of each particular branch. To
make sense out of the temporal pattern vector qm =
[qm[0], . . .qm[N− 1]]T, we usually explore it in the fre-
quency domain, i.e. Qm[k] =

∑N−1
n=0 qm[n]e

−j2πkn/N,
k= 0,…,N − 1, which is the discrete Fourier trans-
form (DFT) applied to the finite length temporal filter
pattern vector qm of the mth branch, n is the discrete
time index used to refer to the elements of qm and k
indexes frequency bins.

It is important to realize that the temporal pattern
Qm[k] of a neuronal population is simply power spec-
tral density of the activity of this neuronal population.
Together with the spatial pattern it fully describes
both second order dynamical properties and the spa-
tial location of a neuronal population. Similarly to
the spatial filter weights that are not equal to the spa-
tial pattern [8], the temporal filter weights and their
Fourier representation do not reflect the dynamical
properties of the underlying neuronal population.

In the above for illustrative purpose we used tem-
poral embedding to describe operation of the convo-
lutional layer of the CNN. This allowed us to emphas-
ize the formal similarity between the temporal and
spatial dimensions and illustrate that the interpreta-
tion of temporal patterns requires taking into account
the correlation structure of the independent variable
in the regression model built on the top of the spa-
tially filtered data.

A more general and practical treatment can be
given if we consider operation of this architecture on
an extended piece of a signal so that the spatial and
temporal filters are applied to the sliding window of
data. In this case, operation of the band-pass tem-
poral filter in the mth branch can be expressed as a
convolution between the two sequences, i.e. bm[n] =
hm[n] × vm[n], see also figure 2 and compare this
expression to the definition of vm[n] immediately after
expression (4).
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The described architecture performs both spatial
and temporal filtering to isolate pivotal population
activity signals sm[n]. To work with convolution and
to derive a general rule for temporal pattern defined
as power spectral density of the activity sm[n] of the
task related neuronal population the mth branch is
tuned to it is easier to operate in the frequency domain
and use the standard Wiener filtering arguments. We
assume here that as a result of training the spatial
filter is settled at the optimal value w∗[n] and that
the temporal filters weights hm are Wiener optimal
and provide the best estimate of sm[n] in the least
squares sense. In this case it is possible to connect
the power spectral density of the underlying neur-
onal population activity signal sm[n] to the spatially
filtered sensor data v∗m[n]. Spatially filtered v∗m[n] =
w∗T

m x[n] represents a noisy mixture of the unknown
pivotal population activity signal sm[n] and the activ-
ity um[n] = w∗T

m η[n] of other task-unrelated popula-
tions A1, . . . ,AJ. In other words:

v∗m[n] = w
∗T
m x[n] = sm[n] + um[n]. (7)

In the frequency domain, the weights of the
Wiener filter h∗m[n] that is designed to extract signal
useful for the posed decoding task from the noisy
spatially filtered v∗m[n] can be expressed as a function
of the power spectral density Pv

∗v∗
m [k] of v∗m[n] and

the cross-spectrum, Psv
∗

m [k], between the unknown
underlying neuronal population activity signal sm[n]
and the spatially filtered sensor data v∗m[n] [24]:

H∗
m[k] =

Psv
∗

m [k]

Pv∗v∗m [k]
. (8)

Following the standard Wiener filter derivation
logic, if we assume that η[n] and s[n] in (1) are stat-
istically independent which in turns means that sm[n]
and vm[n] in (7) are also statistically independent we
get that Psv

∗
[k] = Pssm[k] and Pv

∗v∗
m [k] = Pssm[k] + Puum [k]

we obtain the following expressions for the optimal
Wiener filter transfer function H∗

m[k]:

H∗
m[k] =

Pssm[k]

Pssm[k] + Pum[k]
=

Pssm[k]

Pvvm [k]
. (9)

Therefore, the frequency-domain pattern Q∗
m[k]

which corresponds to the power spectral density Pssm
of the neuronal population activity signal the mth
branch is tuned to can be computed as

Q∗
m[k] = Pssm[k] = Pvvm [k]H

∗
m[k] (10)

where H∗
m[k] in (10) is the Fourier transform of the

vector h∗m containing temporal-convolution weights
identified during the adaptation of the envelope
detector in the mth branch. Viewing this result as
a product of learning, we can say that learning to
decode we gain access to the spectral pattern of activ-
ity (10) of the neuronal population critical for the
particular decoding task. Importantly, the temporal

filter weights alone will be informative of the popu-
lation activity spectral pattern only in case the input
timeseries v∗m[n] are white. We would also like to note
that expression (10) is the frequency domain equival-
ent of equation (6) obtained in the temporal embed-
ding format.

The spatial patterns gm of neuronal sources recon-
structed from the spatial filtering weights [8] determ-
ine spatial location of a neuronal population and are
routinely used for dipole fitting to localize function-
ally important neural sources [20]. The spectral pat-
terns interpreted according to (10) and (6) can be
used to fit the models of neural population dynam-
ics, which are relevant to specific decoding tasks, see
for example [22].

2.3. Simulations
To explore the performance of the proposed
approach, we performed a set of simulations. The
simulated data corresponded to the setting shown
in the phenomenological diagram (figure 1). We
simulated I= 4 task-related sources with rhythmic
potentials si[n]. The potentials of these four task-
related populations were generated as narrow-band
processes in the lower to higher gamma sub-bands
(30–80 Hz, 80–120 Hz, 120–170 Hz and 170–220 Hz)
obtained from filtering Gaussian pseudo-random
sequences with a bank of FIR filters. We then sim-
ulated the kinematics z[n], as a linear combina-
tion of the four envelopes of these rhythmic signals
with randomly generated vector of coefficients. We
used task-unrelated rhythmic sources with activa-
tion timeseries obtained similarly to the task-related
sources but with filtering within the following four
bands: 40–70 Hz, 90–110 Hz, 130–160 Hz, and 180–
210 Hz bands. In each such band we simulated ten
task-unrelated sources resulting into total of 40 task-
unrelated sources. To simulate volume conduction
effect and the way the task-related and task-unrelated
source activity gets measured by the electrodes, we
randomly generated a 4× 5 dimensional forward
matrix G and a 40× 5 dimensional forward matrix
A. These matrices mapped the task-related and task-
unrelated activity, respectively, onto the sensor space.
For each Monte-Carlo trial we generated new mixing
matrices G, A and new source-time series. We have
also added 1/f noise to the sensor data to simulate
spatially uncorrelated brain noise.

We generated 20min worth of data sampled at
1000 Hz and split them into two equal contiguous
parts. We used the first part for training and the
second for testing.

3. Experimental datasets

First, in order to compare the compact CNN archi-
tecture with the top linear models that rely on pre-
set features, we used publicly available data collected
by Kubanek et al from the Berlin BCI competition
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IV. This dataset contains concurrent multichannel
ECOG and finger flexion kinematics measurements
collected in three epileptic patients implanted with
ECoG electrodes for medical reasons. The database
consists of 400 s of training data and 200 s of test data.
The recordings were conducted with 64 or 48 elec-
trodes placed over the sensorimotor cortex. The exact
spatial locations and the order of the electrodes were
not provided. As a baseline in this comparison, we
chose the winning solution offered by Nanying Liang
and Laurent Bougrain [16]. This solution employs
extracting the amplitudes of the data filtered in 1–
60 Hz, 60–100 Hz, and 100–200 Hz band followed
by a pairwise feature selection and decoded using
Wiener filter with N = 25 taps from the immediate
past.

The next dataset comes from our Center for
Bioelectric Interfaces (CBI) laboratory. The record-
ings were conducted with a 64-channel Adtech
microgrid connected to EB Neuro BE Plus LTM
Bioelectric Signals Amplifier System that sampled
data at 2048 Hz. The amplifier software streamed
data via Lab Streaming Layer protocol. The experi-
mental software supported this protocol, implemen-
ted the experimental paradigm (a finger movement
task) and synchronized ECoG and kinematics. Finger
kinematics was captured by Perception Neuron sys-
tem as relative angles for the sensor units attached
to finger phalanges, and sampled at 120 Hz . Fin-
ger flexion-extension angle was used as kinematics
timeseries, z[n].

The recordings were obtained in two patients
with pharmaco-resistant formof epilepsy; ECoGelec-
trodes were implanted for the purpose of pre-surgical
localization of epileptic foci andmapping of eloquent
cortex. Thus, for these data, unlike in the case of Ber-
lin BCI competition IV data we knew the cortical
location of each electrode and were able to visualize
spatial patterns of activity. The patients performed
self-paced flexions of each individual finger for 1min.
The study was conducted according to the ethical
standards of the 1964Declaration ofHelsinki. All par-
ticipants provided written informed consent prior to
the experiments. The ethics research committee of
the National Research University, The Higher School
of Economics approved the experimental protocol of
this study.

Finally we apply our architecture to a 32-channel
motor-imagery dataset recorded at sampling fre-
quency of 250 Hz from a subject executing motor-
imagery (MI) with total of four states: left hand MI,
right handMI, legs MI, rest. Recorded EEG data were
split into 2 s long overlapping segments with 0.2 s
step, so that each such segment referred to one motor
state. The segments extracted from the first contigu-
ous part of the recorded data was used for training
and the rest was used for testing.

4. Results for simulated data

4.1. Adaptive envelope detector
As described in the section 2, to interpret optimal
temporal convolution weights we need to consider
the spectral characteristics of neural recordings. To
illustrate this, we first used simplified simulations
with one task-related source occupying 50–150 Hz
frequency range and one task-unrelated source act-
ive within 50–100 Hz band which is a subrange of
the task-related signal frequency band. We trained a
single-channel (M= 1) adaptive envelope detector.
As can be seen from figure 3, the Fourier profile of the
identified temporal convolution weights can not be
used to assess the power spectral density of the under-
lying signal as it has a characteristic suppression over
the frequency range occupied by the interference. The
reduced gain in this frequency range can be under-
stood from the expression of Wiener filter transfer
function (9). It shows that the transfer function will
have a gain smaller than 1 over the frequency range
where an interference is present, i.e. Pηηm [k] ̸= 0. For
simulations shown in figure 3 the interference occu-
pied 50–100 Hz frequency range. At the same time,
the expression in (10) allows us to obtain a proper
pattern that matches well the simulated spectral pro-
file. Conversely, using the DFT of the convolutional
filter weights yields fundamentally erroneous estim-
ates of the frequency-domain patterns and potentially
erroneous interpretation of the underlying neuro-
physiology.

4.2. Realistic simulations
For the simulated data, we trained the algorithm to
predict the kinematic variable z[n]. In the noiseless
case, the proposed architecture achieved accuracy of
99% measured as correlation coefficient between the
true and the estimated kinematics, see figure 4. We
then compared the envelopes at each of the four
branches of our architecture and observed that the
true latent variable timeseries (in the form of the
underlying narrow-band envelopes) matched very
well those estimated with our architecture. Figure 5
shows estimated envelopes rm[n], superimposed on
the true envelopes and the underlying narrow-
band process bm[n] (figure 2). We can see a good
agreement between the estimated and true envel-
ope timeseries with pairwise correlation coefficients
within 98%–99% range.

As described in the section 2, for spatial weights
interpretation, we used the linear estimation the-
oretic approach [8, 11]. To warn against its naive
implementation in the context of architectures that
combine spatial and temporal filtering, we computed
spatial patterns where we used the input data covari-
ance, Rx, without taking into account the individual-
branch temporal filters. In the corresponding plots,
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Figure 3. Three possible ways to interpret temporal convolution weights. True pattern of dynamic activity i.e. the power spectral
density (PSD) (orange ∗) of the source. Fourier domain representation of the temporal convolution weights (black •), Ball’s
method (green+) and the dynamic source activity pattern reconstructed with the proposed approach (blue ▼).

Figure 4. Realistic simulations. Actual and decoded kinematics.

we refer to the patterns determined using this
approach as Patterns naive. The proper way to apply
this estimation approach is to compute spatial cov-
ariance, Ry, for the temporally filtered data (6). These
properly determined patterns are labeled as Patterns
in the subsequent plots.

In the right column of figure 6, we show the res-
ults of reconstructing spatial patterns in the noise-
less case for all four branches of the network. As
expected, the spatial Patterns naive and Patterns are
identical and match the ground truth exactly. The
left column shows Fourier representations of the tem-
poral patterns and weights where we can observe that
in the noise-free scenario Fourier representations of
the temporal weights matches exactly the power spec-
tral density of the simulated data.

In the noisy case demonstrated in figure 7, only
Patterns match well with the simulated topographies
of the underlying sources. Spectral characteristics of
the trained temporal filtering weights exhibit charac-
teristic deeps in the bands corresponding to the activ-
ity of the interfering sources. After applying expres-
sion (10), we obtain the spectral patterns that more
closely match the simulated ones and have the deeps
compensated.

4.3. Monte-Carlo simulations
In the above plots we showed two specific cases of
this architecture operating in the noisy and noiseless
cases for a fixed spatial configuration of task-related
and task-unrelated sources as modelled by matrices

G and A. To test the proposed approach for weights
interpretation we performedMonte-Carlo study with
different spatial configuration of sources at each trial
and for the four different noise levels. To implement
this, matrices G and A which model the volume con-
duction effects at each Monte Carlo trial were ran-
domly generated according to N (0,1) distribution.
We created 20min worth of data sampled at 1000 Hz.
For neural network training we use Adam optim-
iser. We made about 15k steps. At 5k and 10k step
we halved the learning rate to get more accurate pat-
terns. In total, we have performed more than 3k sim-
ulations. For each realization of the simulated data
we have trained the algorithm to predict the kin-
ematic variable z[n] and then computed the patterns
of sources the individual branches of our architec-
ture got ‘connected’ to as a result of training. Figure 8
shows that only the spatial Patterns interpreted using
branch-specific temporal filters (blue dots) match
well the simulated topographies of the true underly-
ing sources. The spectral patterns obtained using the
proposed approach also appear to match well with
the true spectral profiles of the underlying sources.
Directly considering the Fourier coefficients of the
temporal convolution weights results into generally
erroneous spectral profiles (red triangles). For spatial
patterns we also show the results for naively estim-
ated patterns without taking into account branch-
specific temporal filtering (green dots). Thus, using
the proper spectral patterns of the underlying neur-
onal population it is now possible to fit biologically
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Figure 5. Branch envelopes decoding. Comparison between the true and the decoded envelope in each of the four branches.

Figure 6. Temporal (left) and spatial (right) patterns obtained for the noiseless case. See the main text for description.
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Figure 7. Temporal (left) and spatial (right) patterns obtained for the noisy case, SNR= 1.5. See the main text for description.

Figure 8.Monte-Carlo simulations. Point coordinates reflect the achieved envelope decoding performance (x-axis) and
correlation coefficient with the true pattern (y-axis) at each Monte Carlo trial. Each point of a specific color corresponds to a
single Monte Carlo trial and codes a method used to compute patterns.Weights—direct weights interpretation, Patterns
naive—spatial patterns interpretation without taking branch specific temporal filters into account, Patterns—the proposed
method.

plausible models, e.g. [22], and unravel true neuro-
physiological mechanisms underlying the decoded
process.

5. Analysis of real experimental data

5.1. Berlin BCI competition IV data
In the context of electrophysiological data processing,
the major advantage of the architectures inspired by

the deep-learning principle is their ability to auto-
matically select features while performing classifica-
tion or regression tasks [31].When applied to the data
from Berlin BCI competition IV, we did not observe
significant differences between the performance of
the compact CNN and the winning solution by Lian
and Bougrain [16] (Mann–Whitney test, U = 103.0,
p= 0.3543), see table 1. Note, however, that the CNN
performed feature engineering automatically.
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Table 1. Comparison of the performance of the proposed architecture (NET) and the winning solution (Winner) of Berlin BCI
competition IV dataset(4). < <±>> denotes the standard deviation in the performance obtained with different launches of training
process.

Subject 1

Thumb Index Middle Ring Little

Winner 0.58 0.71 0.14 0.53 0.29
NET 0.54± 0.03 0.7± 0.02 0.2± 0.07 0.58± 0.03 0.25± 0.06

Subject 2

Thumb Index Middle Ring Little
Winner 0.51 0.37 0.24 0.47 0.35
NET 0.5± 0.03 0.36± 0.04 0.22± 0.06 0.4± 0.04 0.23± 0.06

Subject 3

Thumb Index Middle Ring Little
Winner 0.69 0.46 0.58 0.58 0.63
NET 0.71± 0.02 0.48± 0.03 0.5± 0.02 0.52± 0.02 0.61± 0.02

(a) (b)

Figure 9. Network weights interpretation for the index finger kinematics decoder in CBI patient 1 (ECOG). Each row of plots
corresponds to one of the three branches of the trained decoder. (a) The left most column shows color-coded spatial filter weights,
next two columns correspond to naively and properly reconstructed spatial patterns. Blue color corresponds to the minimum
absolute activation and yellow to the maximum. (b) Temporal filter weights interpretation in the Fourier domain. FFT of filter
weights—(black •), power spectral density (PSD) Q∗

m[k] pattern of the underlying LFP (blue ▼) obtained according to equation
(10). Another line (red ♢) is the PSD of the signal at the output of the temporal convolution block. Results of sensitivity analysis
using the perturbation approach [4, 34] are shown in (green+). See also Figure 11 for this spatial patterns overlayed on the cortex.

5.2. Dataset 2
We also applied the proposed solutions to the record-
ings conducted in two patients implanted with 8× 8
ECoG microgrids grids placed over the sensorimotor
cortex and performing individual finger flexion tasks,
see section 3.

The following table shows the accuracy achieved
with the proposed architecture for the decoding of
finger movements.

Figures 9 and 10 depict the interpretation of the
obtained spatial and temporal weights. The plots are
shown for the finger with the highest decoding accur-
acy (highlighted in bold in table 2) for two patients.

The decoding architecture for both patients had
three branches and each branch was tuned to a
source with specific spatial and temporal patterns.
In figure 9, we show the spatial filter weights, naive
patterns and proper patterns interpreted using the
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(a) (b)

Figure 10. Network weights interpretation for the little finger kinematics decoder in CBI patient 2 (ECOG). Each row of plots
corresponds to one of the three branches of the trained decoder. (a) The left most column shows color-coded spatial filter weights,
next two columns correspond to naively and properly reconstructed spatial patterns. Blue color corresponds to the minimum
absolute activation and yellow to the maximum. (b) Temporal filter weights interpretation in the Fourier domain. FFT of filter
weights—(black •), power spectral density (PSD) Q∗

m[k] pattern of the underlying LFP (blue ▼) obtained according to equation
(10). Another line (red ♢) is the PSD of the signal at the output of the temporal convolution block. Results of sensitivity analysis
using the perturbation approach are shown in (green+).

Table 2. Decoding performance achieved in the two CBI patients. The table shows correlation coefficient between the actual and the
decoded finger trajectory for the four fingers in two patients. < <±>> denotes the standard deviation in the performance obtained
with different launches of training process.

Thumb Index Middle Ring Little

Subject 1 0.48± 0.04 0.79± 0.02 0.77± 0.03 0.61± 0.03 0.32± 0.05
Subject 2 0.73± 0.02 0.55± 0.03 0.72± 0.03 0.78± 0.02 0.79± 0.01

expression described in the section 2. It can be seen
that, while the temporal filter weights (black •) clearly
emphasized the frequency range above 100 Hz in the
first two branches, the actual spectral pattern of the
source (blue ▼) in addition to the gamma-band con-
tent had a peak at around 11 Hz (1st, 2nd branches)
and in the 25–50 Hz range (2nd branch). These
peaks likely correspond to the sensorimotor rhythm
and low-frequency gamma rhythms, respectively.The
third branch appears to capture the lower-frequency
range and its spatial pattern is noticeably more dif-
fuse than that in the first two branches that capture
the higher-frequency components. Similar observa-
tions can be made from figure 10 that shows to the
decoding results for the little finger in patient 2. Inter-
estingly, the second branch frequency domain pattern
(blue ▼) appears to be significantly different from
that obtained by a simple DFT of the weights vector

(black •) and contains contributions from the lower
20–45 Hz frequency range. When fitting dynamical
models of population activity to this reconstructed
frequency domain pattern, the low-frequency com-
ponents are likely to significantly affect the paramet-
ers of the corresponding dynamical model.

5.3. Dataset 3
Unlike the previous two datasets, which required con-
tinuous trajectory decoding from invasive ECoG, the
dataset 3 was recorded non-invasively using a dis-
crete state EEGmotor-imagery paradigm as described
in section 3. The challenge here was to classify the
type of performed motor imagery. Given short dur-
ation of this data the compact CNN architecture
learned the task quite well and yielded on average 0.83
ROC AUC for a single task as measured on the test-
ing segmented represented by the second half of the
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Figure 11. Spatial patterns mapped onto cortex. Blue color corresponds to the minimum absolute activation and yellow to the
maximum.

Table 3. Decoding performance achieved for the third CBI patient (EEG). The table shows ROC AUC for different classes <<±>>
denotes the standard deviation in the performance obtained with different launches of training process.

Legs Right Left Rest

Subject 3 0.75± 0.05 0.87± 0.06 0.88± 0.04 0.81± 0.05

data temporally non-overlapping with the training
segment.

The results of weights interpretation are shown
in figure 12. The first automatically found pattern
reflects the lateralized occipital alpha activity earlier
know to be associated with motor tasks [12, 28]. As
shown in panel (b) the use of the novel approach
for interpreting temporal weights clearly indicates the
presence of a well defined alpha-band source. The
second branch got tuned to the sensori-motor cortex
hand representation area. As evident from the Pat-
terns curves representing the power spectral dens-
ity of the activity of the second pivotal population
the source exhibits well defined and physiologically
plausible lower and upper (10, 20 Hz) sensorimotor

rhythm components. Exploring the FFT of weights
gives a drastically different estimate of the PSD of the
pivotal population activity and focuses on rather high
35–40 Hz frequency range. We wold also like to note
that the spatial pattern reconstructed using the naive
approach (the middle column of panel (a)) appears
to be misleading and can not be attributed to hand’s
sensori-motor cortex. The last pattern appeared to
highlight a source located in leg’s sensori-motor cor-
tex and active in alpha-band.We emphasize that these
patterns (both spatial and temporal) were automat-
ically recovered just using the data and the specific
decoding task. As evident from the above descrip-
tion, exploration of these patterns allowed us to get
insights into the anatomic and dynamic properties of
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Figure 12. Network weights interpretation for the three branches (three rows of plots) of the decoder trained on a motor-imagery
EEG dataset. (a) The left most column shows color-coded spatial filter weights, next two columns correspond to naively and
properly reconstructed spatial patterns. White color corresponds to the minimum absolute activation and red to the maximum.
(b) Temporal filter weights interpretation in the Fourier domain. FFT of filter weights—(black •), power spectral density (PSD)
Q∗

m[k] pattern of the underlying LFP (blue ▼) obtained according to equation (10). Another line (red ♢) is the PSD of the signal at
the output of the temporal convolution block. Results of sensitivity analysis using the perturbation approach are shown in
(green+).

the neuronal populations subserving motor-imagery
mechanisms.

6. Conclusion

We first described a neurophysiologically inter-
pretable architecture based on a compact convolu-
tional network with separable spatial and temporal
filtering similar to those reported earlier [13, 34, 38,
40]. Using this architecture, we extended the linear
regression weights interpretation approach [8] to the
analysis of the temporal convolution weights and
adapted it to the architectures with multiple branches
with specific spatial and temporal filters in each. We
tested the proposed approach using realistically sim-
ulated and experimental data. To mimic a real-life
scenario our simulated signals comprised activity of
both task-related and task-unrelated populations that
had to be separated by the decision rule in order to
solve the kinematics decoding task. The activity of
populations was simulated in the extended gamma
range so that the activity of task-related neuronal
populations would overlap with electrical signals
generated by the task-unrelated sources. The realistic-
ally present overlap between the spatial topographies

of task-related and task-unrelated sources was
ensured by the ten-fold difference in the their
quantity.

In the realistically simulated data, the compact
CNN reconstructed with high accuracy the simulated
neuronal substrate that contributed to the simulated
kinematics data. Interestingly, as shown in figure 8,
even in cases when the decoding accuracy was low, the
spatial and temporal patterns appeared to be accur-
ately estimated.

At the same time, the accuracy of spatial patterns
reconstruction was noticeably higher than that for
the temporal patterns (interpreted in the frequency
domain). Such a behavior may partly stem from the
fact that in our simulations the spatial patterns of each
branch were encoded using only five coefficients as
compared to 100-tap long temporal filters. One pos-
sible workaround that would reduce the number of
the temporal convolution parameters to be identified
is to use sinc-layer described in [29] and applied in a
neural network for the analysis of acoustic signals. At
the same time, such an approach reduces the flexib-
ility in spectral shaping of individual branches of the
network and require more pathways to be added to
the network to achieve performance comparable to
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that reported here which may complicate the inter-
pretation of the obtained decision rule.

We have also applied the described architecture
to Berlin BCI competition IV data. The compact
CNN-based architecture delivered similar decoding
accuracy compared to the winning solution of this
BCI competition [16]. In contrast to the traditional
approaches, the compact CNN architecture studied
here did not require any additional feature engin-
eering. On the contrary, after the architecture was
trained to decode finger kinematics, we were able to
interpret its parameters and extracted physiologic-
ally meaningful patterns corresponding to both spa-
tial and temporal convolution weights. The latter was
demonstrated using our own ECoG data collected
from subjects performing a self-paced finger-flexion
task for which we knew the spatial locations of ECoG
electrodes.

There have been several reports describing com-
pact DNN-based architectures similar to the one
presented here. As we demonstrate, the main advant-
age of such simple architectures with a low count of
layers and non-linear elements is the direct and the-
oretically justified tractability of their parameters in
agreement with the linear estimation theory principle
[11]. We keep calling these architectures Deep neural
networks as they retain the distinctive property of the
DNNs and use first several layers for feature engineer-
ing. In addition, our architecture is confined to derive
physiologically meaningful features so that they can
be interpreted with the approaches proposed here.
In terms of spatial processing, that is combining the
data from different sensors with specific weights, each
branch of the described architecture, see figure 2, cor-
responds to the model studied in [8] and therefore
as we show using the envelope uniqueness argument
[6] this approach for weights interpretation is directly
applicable to each of the branches. Our derivations
show that when interpreting the spatial weights of
each branch one needs to take into account the branch
specific temporal filter. This may not be directly obvi-
ous when looking at figure 2 since for efficiency reas-
ons the temporal convolution layer is placed past the
spatial convolution layer. However, because of the lin-
earity of both operations, the two can be swapped
and then the linear estimation theory principle reit-
erated in [8] directly applies to the spatial weights of
each branch receiving appropriately temporally pre-
filtered data with the temporal filter specific to this
branch.

In [8] as one of the considered examples the
authors describe the regression task where feature set
represents a vector sampled from both spatial and
temporal domains. To interpret the regression coeffi-
cients vector one needs to use the covariancematrix of
the entire LT dimensional feature sampled over L×T
spatial-temporal grid. Unlike in that example the pro-
cessing preformed by the architecture considered here
and in several other recent papers, see [31] for a

review, is factorised into both spatial and temporal
domains and feature extraction of each branch is
served by L+T-dimensional vector. In this setting, as
we have shown, given the fixed weights in one of the
domains (spatial or temporal) the problem of identi-
fying the weights in the other domain is a simple
regression task whose weights need to be interpreted
according to the linear estimation theory principle.
Formally, the spatial and temporal domain weights
are identically treated. Therefore, in order to inter-
pret the temporal filter weights and discover tem-
poral (usually visualized in the frequency domain)
patterns one also needs to take into account the cor-
relation structure of the input signal. The correlation
structure of a signal in time domain is represented
by the signal’s autocorrelation and equivalently by the
power spectral density. As we show and in agreement
with the optimal filter theory the frequency domain
patterns of activity of the pivotal populations each
branch is tuned to can be reconstructed by comput-
ing the product between the Fourier representation of
temporal filter weights and the power spectral dens-
ity of the input data filtered with the branch-specific
spatial filter.

Traditionally, only the Fourier transform of the
temporal filter weights is considered in the context of
interpretation of the decision learnt by the adaptive
architectures. In the context of motor activity decod-
ing it has been consistently found that gamma band
oscillations hallmark themovements and tracking the
power in this band can be used to reconstruct the
movement trajectory from activity of the sensorimo-
tor cortex. These very observations are also repor-
ted in several papers that apply compact architectures
for analysis of neural data [34, 40]. However, accord-
ing to equation (9) it does not in general mean that
lower bands are not informative and that the pivotal
population is not active in the lower frequency bands
and that its activity is not co-modulated with the
movement. All this means is that possibly task-related
activity of the pivotal population in the lower fre-
quency range is contaminated by the task-unrelated
activity of other populations. Here, we for the first
time show how using Wiener optimality arguments
applied to the interpretation of CNN’s temporal con-
volutionweights it is possible to reconstruct the entire
power-spectral density (PSD) of the neuronal popu-
lations pivotal to the decoding task. The obtainedPSD
profiles can then be used to fit physiologically justified
models such as those described in [22].

Our simulations show that the properly inter-
preted solutions result into the ground truth activity
patterns. However, the uniqueness of the decision
rule found by the compact neural architecture
described here needs to be studied in further details.
For example, a simple analysis shows that in cases
when the temporal filters of two branches of our
CNN architecture are identical the spatial weights
are no longer guaranteed to be unique. Therefore a
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rigorous proof of the decision rule uniqueness is an
important step that needs to be made in the future in
order to take full advantage of the knowledge extrac-
tion approach proposed here.

In the present study we did not explicitly address
the choice of the number of branches M. In our
numerical experiments with simulated data we used
the number of branches informed by our simula-
tions setting. In practice we followed a conservat-
ive strategy, started from a low number of branches
(1–2) and then increased this number until the per-
formance plateau was reached. Note that the result-
ing number of branches determined this way depends
not only on the actual number of populations pivotal
to the task but also on the amount of data available
for training. This is because increasing the number
of branches we also increase the number of paramet-
ers to be identified from the same amount of data,
which is reflected in the decoding accuracy estimated
on an independent data sample. Theoretically, given
the ample amount of training data the number of
branches is to be equal to the number of distinct neur-
onal populations subserving the decoded process.

To obtain the results presented we standardized
the data, i.e. subtracted the mean and divided by the
standard deviation. Therefore, when applied in real-
time special care needs to be taken to keep track of
the mean and maintain the specific dynamic range
of the data. The compact CNN architecture that we
have explored here was designed to operate causally,
i.e. using only the neuronal activity data from the past
to predict the current value of the kinematic para-
meter or motor imagery state. At the same time, fun-
damentally, the output of the causal temporal filter
layer in this CNN architecture is always delayed with
respect to the input signal. Training this architecture
to estimate the current (not delayed) kinematic para-
meter value using the data from the immediate past
forces the CNN to learn to predict the kinematic vari-
able value and thus compensate for the amount of
the delay imposed by the temporal filters. Although
we did not explicitly study this phenomenon here,
the above considerations lead us to think that we can
count on the delay-free kinematics decoding when
such architectures are used in a real-time processing
mode.
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